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A Unified Program for Phase Determination, Type 3P,

By J. KarLE axnp H. HavpTMAN
U.8. Naval Research Laboratory, Washington 25, D.C., U.S. 4.

(Recetved 3 October 1959)

The unified program for phase determination, valid for all the space groups and both the equal and
unequal atom cases, is continued here. The present paper is concerned with the centrosymmetric
space groups comprising type 3P,. A detailed procedure for phase determination is deseribed for

this type.

1. Introduction

This is the fifth in a series of papers concerned with a
unified program of phase determination, initiated by
us (Karle & Hauptman, 1959, hereafter referred to
as 1P). The application of the new probability meth-
ods, based on the Miller indices as random variables,
is made here to the space groups of type 3Pz (Haupt-
man & Karle, 1953, 1959). This type consists of the
three primitive centrosymmetric space groups of the
rhombohedral system, the seven primitive centro-
symmetric space groups of the cubic system, the two
conventionally F-centered centrosymmetric space
groups of the orthorhombic system and the six con-
ventionally F-centered centrosymmetric space groups
of the cubic system. The F-centered space groups are
referred, in this paper, to the primitive unit cells
defined in our paper on the seminvariants (Hauptman
& Karle, 1959). Also listed in the latter paper is a set
of coordinates for each space group. This is equivalent
to choosing the functional form for the structure
factor which is to be employed in the present paper.
A detailed procedure for phase determination in the
space groups of type 3P, will be presented which
utilizes the same general formula, and, at the same
time, makes use of relationships among the structure
factors characteristic of each space group.

2. Notation

The same notation as appears in 1P (1959) is employed
here.

3. Phase determining formulas
3-1. Basic formulas
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In these formulas, p, g, r and { are restricted to be
positive. Ordinarily they are given values in the range
2-4.

The remainder terms are given in the appendix, § 6
and in 1P (1959). Equation (3-1-1) or (3-2-1) serves to
determine the magnitudes of the structure factors |&y|
corresponding to the squared structure. By means of
equation (3-1-2) or (3-2-2), the phases of these struc-
ture factors g, may be determined. In the next section
we describe in detail how these equations are to be
used.

4. Phase determining procedure

It is assumed that the |&y| have been calculated from
the observed intensities. From these, the |&y] are
obtained by applying (3-1-1) or (3-2-1). In fact the |&yl,
so computed, may be made to cover a range of re-
flections extending beyond that of the original set of
observations. We are here concerned only with the
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larger |&yl, and it is the phases of these whose values
are to be determined. In the application of (3-1-2) or
(3-2-2), the values of some |&y'| may be required.
These may be estimated from the corresponding |&y,]
or |&y| or calculated from (3-1-1) or (3-2-1) in which
& is replaced by & and &’ by &', given sufficient
data.

In the phase determining procedures to be described,
it will be seen that the first steps concern the applica-
tion of (3-1:2) or (3-2-2) with choices of indices which
take full advantage of the space-group symmetry.
The final step is in the form of a general application
which is the same for all the space groups.

The specification of the origin is carried out in
conformance with the seminvariant theory previously
developed (Hauptman & Karle, 1953, 1959). It is the
same for all space groups of a given type, and therefore
is the same for all the space groups considered here.

In type 3P:, the phases gnr; which are structure
seminvariants, are of the form A+ %41 =0 (mod 2).
In other words either one or all three of the indices
must be even. This means that once the functional
form of the structure factor has been chosen, the
values of these phases are uniquely determined by the
intensities alone. It is of interest to note in the proce-
dures to follow, how a single equation, (3-1-2) or (3-2:2),
used in conjunction with relationships among the
structure factors, characteristic of the particular space
group and the chosen functional form for the structure
factor, does, in fact, lead to unique values for the
structure seminvariants.
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4-1. Rhombohedral system

We are concerned here with space groups R3, R3m
and R3c.* Two special choices of h; and hs, in addition
to hy=hs, are shown in the first two rows of Table 1.
By means of the first of these choices,

h1=(h1, E-{—hl, l+}L1) and h2=(k+ﬁl, i+El, El) s

equation (3:1-2) or (3-2-2) yields the wvalue of
Enyim,iem Gy from which @pu(h+k+1=0) may
be determined. The second choice of h; and hs used
with (3-1-2) or (3:2-2) yields the value of

12 — - - r
¢ 1/2(h-+k+D), 1/2(h+k+l),1/2(h+k+l)g hiT >

from which @uu(h+k+1=0 (mod 2)) may be deter-
mined. Additional choices for R3m and R3¢ appear
in Table 2. For example, the first pair of h; and h»
in column 2 yields the value of &% 74,6 mul-
tiplied by the numerical coefficient given in column 2
of Table 2. For R3¢, the relationship

gflzkl= ('— 1 )h+k+lédléu )

following from the chosen functional form for the
structure factor, gives rise to the entry (—1)**2 in
column 2. In this way the value of the phase ¢z
is determined. The remaining choices for h; and h.
of Table 2 yield, in a similar way, the values of
Prazts Pior> Przits Porr 30d oy The entries in this

* The discussion to follow is equally valid for the super-
groups included in Tables 1, 2 and 3.

Table 1

Two choices of h, and h, for obtaining seminvariant phases for space groups, R3, R3m, R3¢, Pm3, Pn3, Pa3, Pm3m, Pn3n,
Pm3n, Pn3m, Fm3, Fd3, Fm3m, Fm3c, Fd3m and Fd3c, by means of (3-1:2) or (3:2-2). The latter equations yield the value of
é’ﬁé’{l from which the value of (pl', may be inferred.

h, hy, hthy, l+hy yh+E+l), 3h+EFRD, 3R+E+D)
h, hthy,  I4+hy, hy Hhtk+1), HR+E+D, HR+E+D)
h=h, +h, R, k, l B, %, l
Condition hetlet1=0 h+k+1 =0 (mod 2)
Table 2

The coefficients of é’]'flé’,'] given by the left side of (3:1:2) or (3:2-2), for selected values of h; and h,, and for each of six space

groups. The notation P(Fm3m) refers to the primitive unit cell,

instead of the conventionally centered one (cf. Hauptman &

Karle, 1959)

h, hyy Bthy, U hy Rhtby, U I+l By, L I+, kL hy, ky E+ky k2 Ky, Ek4E
h, h+hy, Ry U RtRy, By, L, k, I+, L, k U+l hy k+ky, kR, k+E, Kk
h=h,+h, &, h, 0O R, R, 2 I, o0 1 I, 2, 1 0, & kE 2 K k
R3m
P(Fm3m) +1 +1 +1 +1 +1 +1
P(Fd3m)
R3c
P(Fm3c) (— l)h-i-ll (- l)h-i—l (— 1)l+k1 (- 1)l+k (— l)k+h1 (— l)k-i-h

P(Fd3c)
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table are the coefficients of &8y which occur on
the left side of (3-1-2) or (3-2-2). In general k1, k1 and Iy
in Tables 1 and 2 may be chosen arbitrarily, permitting
the possible use of many combinations of hy; and hs
for obtaining the value of a particular phase. As
always, the computations are performed for the larger
values of |& 2 &y

We note that the phases obtained from Tables 1
and 2 are phases @uu(h+k+1 =0 (mod 2)), which are
seminvariants. By use of these, it is possible to cal-
culate the values of additional seminvariants as
illustrated by typical examples in Table 3. It is to be
noted that (3-1-2) or (3-2-2) now yields the value of
61,616y 4n, Where &y, and &y, are assumed to have
been found by use of Tables 1 and 2. Again A1, k1 and [y
are arbitrary, but limited by the set of previously
determined phases.
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For the purpose of specifying the origin a linearly
semi-independent phase, @, =@, (h+k+1%=0(mod2)),
having a large corresponding |&;y| is chosen. The
value (0 or n) of g, is then specified arbitrarily, thus
fixing the origin. Systematic application of equation
(3:1-2) or (3-2-2) then permits the determination of
the phases gy of the remaining &y, of interest, using
previously determined or specified phases as necessary.

An example of a linearly semi-independent phase is
@ggu (§ = even, u = odd). We recall that phases of the
type @osg, Pouu, Pugu, and @uyuy may be obtained directly
from the intensities before an origin specification has
been made. From the specified phase and previously
determined phases, additional phases are obtainable
by suitable choices of h; and hs in (3-1-2) or (3-2-2).
It is readily seen that any phase is accessible, once
the origin specification has been made. This follows

Table 3

Examples of h; and h, which may be inserted into (3:1-2) or (3-2-2) in order to obtain the product ‘fllu‘glllgéal,u +hg from which

the values of additional seminvariant phases may be inferred. This requires a knowledge of lpll" and qJ}',z which may be obtained

by use of Table 2. Thus, this list has a particular significance for the six space groups included in Table 2. The entries may
undergo cyclic permutation on &, k,

h, hy, h+k+hy, h+kE+2h, R+l R+l 0 E+2E, k+2k, h+k+1+2k, 2R, h4k+2h, 2
h, h+hy, h+hy, R+E+I+2R, I, h+k+l, I h+k+2k, 2k, h+E+2k, h+2R;, h+2h, 20421
h=h,+h, & k, l R, B, h, k, l R, k, 2l
h4+k+1 =0 (mod 2) h =k (mod 2)
Table 4

The coefficients of é";,zlé’;,z given by the left side of (3-1-2) or (3-2-2), for selected values of h, and h,, and for each of seven space
groups. The entries may undergo cyclic permutation on &, k, I

h, h, ky hyy, k1 hy, h+hy, 14+R, Hh+E+D), 3R+E+D,  3R+E+I)
h, h k1 hy Ky 1 h+hy, l+hy, Bk Yh+E+D), 3h+EHD,  HR+E+D
h=h,+h, 2k, 0, O 0, 2k, 2I h, k, l h, k, 1
—h+k+1=0 h+k+l =0 (mod 2)
Pm3
Pm3m +1 +1 +1 +1
Pm3n
Pn3
Pn3m (=1)frth (— 1)k (—1)n (—1y
Pnrn3n
Pa3 (=1t (- 1tk (=1 (=1
Table 5

The coefficients of 6"1'121@“ & given by the left side of (3:1+2) or (3-2-2), for selected values of h; and h,, and for each of four space
groups. The entries may undergo cyclic permutation on &, &, I

h, Hh+k), 3R+k), I, ¥h+k), 3R+E), ! hys B4Ry, L hy, Rthy, L hy, htRy, L hy, B+hy, 1
h, th+k), 2h+k), L Hh+E), Bh+E), 1 h+hy, hy, U h+hy, Ry, U h+R, hy 1 k4R, Ry, 1
h=h,+h, &, k, 0 B, kE,2 21 B h, 0 B B 0 R, 2 h, R, 2
h =k (mod 2) h =k (mod 2)
Pm3m +1 +1 +1 +1 +1 +1
Pn3n (= 1EGH (= 1e® (-1 (—1)rth (= 1yt (=1y
Pm3n (—1)Fth (= 1)k (=1hth (=i (—1pt (= 1)+t
Pn3m (= Nit—Bth (=1)3C+iH (—1)k +1 +1 (=1t
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from the fact that, starting with the specified phases
and those of the form g, (A+k+I =0 (mod 2)), it
is possible to express an arbitrary vector h (whose
components have any parity) in the form h1+h2,
where @y, and @p, are known. For example (ph ®oug
is obtamable from suitable phases <ph1 @pou and
q)h2 Poun where h=h;+he. The remaining types
Pugg AN @y, are similarly obtained.

4-2. Cubic system, primitive

We are concerned here with the seven space groups,
Pm3, Pn3, Pa3, Pm3m, Pn3n, Pm3n and Pn3m. The
special choices for h; and he are shown in the first
two rows of Tables 1, 4 and 5. Table 1 has been
described in § 4-1. The entries in Tables 4 and 5 are
the coefficients of &2 &, which occur on the left side
of (3-1-2) or (3-2-2). Again the Ay, k1 and 1 in the
tables may be chosen arbitrarily, permitting the pos-
sible use of many combinations of h; and hs for ob-
taining the value of a particular phase. In the applica-
tion of Tables 4 and 5, the entries in each of the
columns may be carried through cyclic permutations
on the 4, k and I, which would multiply the number of
possible choices by three. For example, the cyclic
permutations are carried out in detail in Table 2,
wherein columns 4 and 6 are cyclic permutations of
column 2 and columns 5 and 7 are cyclic permutations
of column 3. In a manner analogous to that illustrated
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by Table 3, it is possible to use phases obtained by
means of Tables 4 and 5 to obtain additional phases
which are seminvariants. Finally, the origin is specified
as in § 4-1 and the phase determination is completed.

4-3. Cubic system, F-centered

We are concerned here with the six space groups,
Fm3, Fd3, Fm3m, Fm3c, Fd3m and Fd3c. The special
choices for h; and h: are shown in the first two rows
of Tables 1, 2, 6 and 7. The notation P(Fm3) implies
that the space group Fm3 is referred to the primitive
unit cell defined previously (Hauptman & Xarle,
1959). Tables 1 and 2 have been described in § 4-1.
The entries in Tables 6 and 7 are the coefficients of
12 &y which occur on the left side of (3:1:2) or (3-2-2).
Again the A1, k1 and &1 in the tables may be chosen
arbitrarily, permitting the possible use of many
combinations of h; and h: for obtaining the value of
a particular phase. In the application of Tables 6
and 7, the entries in each of the columns may be
carried through cyclic permutations on the 4, k& and [,
which would multiply the number of possible choices
by three (cf. Tables 2 and 8, where the cyclic permuta.-
tions are explicitly carried out). In a manner analogous
to that illustrated by Table 3, it is possible to use
phases obtained by means of Tables 6 and 7 to obtain
additional phases which are seminvariants. Finally,
the origin is specified as in § 4-1 and the phase deter-
mination is completed.

Table 6

The coefficients of é”lllzlta”l'] given by the left side of (3-1-2) or (3:2:2), for selected values of h, and h,, and for each of six space
groups. The entries may undergo cyclic permutation on A, k, 1

h, By ky RAhytk hy, k+1+hy, 1 I+n, L, 1, k, R4k, 3h+Ek+1)
h, h+hy, h+Ey, h+R +Fy hthy, I+hy, 1 I, k+1, 141, h+k, Rk, HR+ES4D)
h=h,+h, R, R, 0 B, 21 h, k1 R, x, l
2l=h+k h+k—3l=0 h+k+1 =0 (mod 2)
P(Fm3)
P(Fm3m) +1 +1 +1 +1
P(Fm3c)
P(Fd3)
P(Fd3m) (= Dtthath (=1 (=1 (= 1wtk
P(Fd3c)

Table 7

The coefficients of é’lllzlé’;] given by the left side of (3-1-2) or (3-2-2), for selected values of h, and h,, and for each of four space
groups. The entries may undergo cyclic permutation on &, k, [

h, R, ky, L Ry, d(le+hy), H(l+M)

h, hyhtFy, bt 1 Ry 3(k+Ry), 3(1+Ry)
h=h,+h, 2h, h, 3 0, k, l

hy =k =1 (mod 2)

P(Fm3m) +1 +1
P(Fm3c) (—1)htrth (—1)3¢+D
P(Fd3m) (=1)* (=1
P(Fd3c) (- 1)k1+ll (- 1)§(k+l+2h1)

Hh+k+1), HR+8k+1D), ¥h+k+1) hyy k+hy, R
3Bh+E+D), Hh+k+D), Hh+E+D) hthy, Ry k
R, K, l R, k, h+k
h+k+1 =0 (mod 4)
+1 +1
(—l)l (_l)h-Hc
(= 1)FC+E+D (=1l

(=1 )&(h+k—2l) (— l)h+k+h1
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21

hyy E+1+hy,
I+ky,
k’
2l=h+k
+1

h+Pky,
h)

htk+l, &k 1
E+l, K I+
h, 2, I
2k=h+1!

+1
(—1)%

h+k,

1
k+i
+1
(=1

ky, Rtl+k,
hyk+Ty,
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2h
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Table 8
The coefficients of é",’,zlé’;l given by the left side of (3:1:2) or (3-2-2), for selected values of h; and h,, and for each of two space groups
I4+h+1,,
R+l I+
0’
+1
(- 1)l+h1+ll

l+hy, U+
l9

hy,

k

L

ky,
ky
+1

(- 1)k+k1+11

k+Fky 41, k+k, k+1,
o,

E+k,+1,,

ky, h+hytky
%y bR+ Fy
0

h’
+1

(- 1)h+h1+k1

hy,
h+hy, h+
k’

h,
h,
=h,+h,
P(Fmmm)
P(Fddd)

h
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Table 9

Examples of h; and h, which may be inserted into (3-1:2) or

(8-2-2) in order to obtain the product 5{116’1;26”1',1_,_112, from which

the values of additional seminvariant phases may be inferred.

This requires a knowledge of phases previously obtained from

use of Table 8 and thus has a particular significance for the

two space groups listed there. The entries may undergo cyclic
permutation on h, k, [

h, h, b, O yh+k+1D), k, 3(A+Ek+1)

h, 0,1 1 h+E+D, 0, $(h+E+1)
h=h,+h, bk, 1 h, k, l
Conditions h—k+1=0 h+k+1 = 0 (mod 2)

(-1

il

4-4. Orthorhombic system, F-centered

We are concerned here with the two space groups
Fmmm and Fddd. The special choices for h; and hs
are shown in the first two rows of Table 8. The entries
in Table 8 are the coefficients of &}2&) which occur
on the left side of (3:1-2) or (3-2-2). We note that
columns 3 and 4 are cyclic permutations of column 2.
Table 9 illustrates how additional seminvariants may
be obtained from the results from Table 8. For ex-
ample, column 2 of Table 9 utilizes the results of
columns 2 and 4 of Table 8; and column 3 of Table 9
utilizes the results of column 4 of Table 8 and column 2
of Table 9 in order to obtain new phases. Finally, the
origin is specified as in § 4-1 and the phase determina-
tion is completed.

5. Concluding remarks

This paper should be read in conjunction with 1P
(1959), in which the symbols are defined and general
remarks are made which are applicable to all the space
groups.

The main choices of h; and h; for the various space
groups are listed in the tables. They illustrate how the
seminvariant phases can be obtained directly from
the X-ray intensities in many different ways.

The many ways of calculating a particular phase,
together with the fact that the calculation of the right
sides of (3:1-2) and (3:2-2) should yield not only the
sign of the left side, but also its magnitude, serves as
a good internal consistency check as the phase deter-
mination proceeds. It is important to bear in mind
that the 4’s or A’s derived from one and two-dimen-
sional data for crystals having considerable overlap
in projection may make incorrect contributions to
(3:1-2) and (3-2-2). Overlap in a projection results in
a reduction of the effective number of atoms in that
projection, a factor which is not taken into account
in the derivation of (3-1:2) and (3-2-2). It may there-
fore often prove worthwhile to calculate (3-1-2) and
(8:2+2), using only those 4’s and A’s which are derived
from three-dimensional data.
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6. Appendix

The correction terms for the formulas listed in § 3 are
given here and in 1P (1959). As a general rule, for
larger N, these terms make a very small contribution.
In any specific instance, the investigator can judge
their importance for himself.

We define:
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rnr 223

+ éah1+ll+lz, ke, h+hot T (”@h1+h2+21, ke, ha+l1+le

1y
+ gh1+h2+11, k2, h1+l1+12)

o
8 ’ nro_
- 01 (”@h1+h2(3(9@h1+hz,k1+k2,11+12

e - e -
+ 3 hha, krtFn, itte T SC hy g b, by ke, 1t
17

e
+ (”@h2+k1, htke, b+l + ("@h2+k1, h1+ke, 1+l

1, 0
+ E hytka, horbr, i1l T Cho By, ko, il
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1y

rre -
+ gk1+h2, ke+l1, k1+12 -+ gh1+h2, ke+1, k1t
1 117
+ é’h1+h2, k1, Fottn T édh1+h2, ka+l1, k1 +i2
r1r

rrr
+ gh2+ll, kitke, htle T ‘gdh2+l1, k1+ke, b1+l

rr e
+ g’h1+'l2, k1+ke, hat+ly -+ ghz-Hl, k1+ke, h1+lz) +.oo.,

(6-13)
ol2
11R3,0———((7' 2)Ex+(p—2)Em+(g—2)
12 .
X &nyeng) + 07, (6-14)
where
e
gr=— 01 éohl(édhl, hotk1+ke+lz, hatke+li+ie
rrr
+ égh1+h2+l?2+lz, k1, ha+Ee+l1+lg
1o
+ édh1+h24. tortla, hatk1+ho i, 1)
11y _
- ghz(éghz,711+k1+k2+ll, h1t+k1+i+e
1
+ E hyphy by, bbbk,
rrr
+ éohuhz+;1+ll, ka, 111+§1+11+12)
1
ogl® 9" o o
- P h1+h2,( h1+he, hi+ke+l1, hitki+le
trr
+ éah2+k1+i1, E1+kz, hi+k1+ie
-+ £h2+21+11,—h-1+k2+11,l1+lz) +o.n (6-15)
7 ai"‘
1233, 0= — ((7‘ 2)5 (p 2)60 +(q 2)
9 .
X gn1+h2) +o0s, (6-16)
where,
g8= £h1(3gh 1, he+E1+kaHg, he+ke+l+iz

+3¢ i’zlll+h2-l-152+12, k1, he+Fa-+la o

+ 3 it tha s, hathrkatia

+ g)i,tlll+12, hotk1+k, ha+ka+i1+He

+ E et Fe, bytio, rotFa b ia T E by tig, kytia, libon

+ éailt,ll+h2+f2, Fetkithe, i T gl’lllikh2+l?2+lz, he+k1, ka+i1+2
-+ é‘};zlll+h2+22, he+k1+ka+iz, kel

+ édl,t[;+h2+k2+_lz, k1t+ke+lz, ha+l1

+ & e, Tt b tha g, Tttt T 6 o, hatb, rathy
+ gl’t’ll+k2, k1+2ke, kot T gi’t’],, k1+ke+iz, ka+1+e

1rr -
+ gh1+h2+lz, k1, h2+l1+lz)

Oy t1r
- 01 é‘}hz(3éah2,7tl+k1+k2+ll, hitk1tii+le

+3 g)lllrll+k2+51+ll, k2, h1+E1+l+l2

+ 36)1’2,1I+h2+k1+21, hitk1+ke+l,le

+ gl’z’z’+l1, Ta+kitke, Fi+k1+l+le

+ éolllrll+h2+;1, ket e T g}llllzlﬂl, ka1, 212

1

11t —- —
+ ghl—!-hﬁﬁ, Fatkitke, T gh1+h2+k1+l1, h1+kg, F1+l+He
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+ gi’l,ll-*-h2+21, h1t+k1+ke+ia, k1+i2

+ 6’171,+h2+k1+21, k1+ke+ly, hi+iz

+ éallzlzl+k1,31+k1+k2+11,7u+11+lz+ éoé;llﬁhz, h1tke, h1+le
+ G b, 212, k1 +tn + g by s, Bt iad 19

rrr
+ £h1+h2+71, ko, FaHa+ls)
12

e
- 0,_4 égh1+h2(3gh1+hz, hitke+h, lat+ihi+le

e _ o =
+ 36 hytrrthy, ke, Fabntta T 3G hy Tyt ko tin 1yt

1 11 - =
+ é‘)h1+h2+22, ke, het Rt T gh1+kz, k1-+katlz, hotketly
1

+ (g);llll+h2+72, k1+ka+iz, 1+le + gh1+k2, hat+k1, litle

+ gl’z’xl+k2+72,32+k1+k2, ket T gllllllﬂz, hatk1+lz, ke+i1+i2
+ gi’z:—.‘-iﬁlz, F1te, o+l+ie gi’tlll+h2+l_cz, he+k1+l2, ket
+ gl,t;,+722, Totkitke, hetlitle T ét}lltlll+h2+iz, k1+ke, ke+i1+He

+ E hyphy, kit kot ts F E hytin, byt ke, hatls) 5 (6-17)
and
(6-18)

13R3, 0=1R3, 0.

Next we define (where Cx(t) is replaced by C»):

12

’ 08 e rer 111

ofy 0= — oa (E2h00+ Eozro+ Eop2.)
80‘6

20:—C ,
" C10204 (2Ch 2)+ 0o

(6-19)

4 2
= aﬁ (201 Oz)ghé‘)

_9
20 16C262
X ((201—02)2+401(801 —6C2+Cs)) +

1R 0= 02+ 010,

5 (80— 602+ Cs) &2+

..y (6:20)
(6-21)
where,

28012

010 =61——— 175 (201 —

Cz)ghégll,

704
201
9806 E
" Cr0204 16 o2
X ((201— Cs)2+4C1(8C1—6C2+Cs)) +

1

Py (8Cy— 602-[—03)5",2

(201 C2) +

.., (6:22)

rrr

’ 1y - -
1Ry o= —— (éoo bkl irkti Chbbas, 0, irE+l

805

+ g’;ll-ll-k+l h+k+l 0— 01 (201—02)+ 09, (6:23)

12R2, 0= 04+ 010, (6-24)
51;’ 2
’ 1743 e’ — -
13Rs 0= — (éa 0, Fketl, k1T Chr il 0, b+

40’6

+& ;zl-,}-k+_l, hE+1,0) Cro20a —(2C1—C2)+ 09, (6:25)
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. R{y=1RP)+1,RP,y; j=0,1; 1=2,3. (6:35
oRi 0= 80 (201_02)((9@ EE+EE b)+ 05, Jo= 1o T 0ty 05 ) ( )
(6-26) For space groups, F'm3 and Fd3,
1085,0= 76 (201 Co) (8 + Eng+ Sy ymy) + 06 RPy=1Ry+1B0%; j=0,1; i=23. (6-36)
e (6-27)  For space groups, Fm3m, Fm3c, Fd3m and Fd3c,
oy .
ulso=c~— 8Cio (201—02)(6’ Eryt Ereing) + 07, RPy=1RPy+1,RPy; j=0,1; i=2,3. (6:37)
6-28
7 ol (6:28) Finally, for space groups Fmmm and Fddd,
' 201 —Ca)(Ex &y i .
12R3, 0= ( Ci—Ce)( 1o+ Eirng) + 98(’6 29 RPy= R+ ,RPy; j=0,1; i=2,3. (6:38)
and Note that 1Rz, o, 1Rs, o, 1R2, 0 and 1Rs, ¢ are defined in
1883,0=1185,0 . (6:30) 1P (1959).

In order to summarize the relations among the cor-
rection terms for the various space groups in type 3Ps,
it is convenient to make the identification,

The remainder terms in the basic formulas are
especially simple for the special case p=g=r=2. For
this case, the formulas reduce to those obtainable by
the algebraic methods proposed by us (1957).

R = RO, (6-31)
R'= RO, (6-32)
Thus, for space groups, B3, R3m and R3c, References
By=1BPy; j=0,1; i=2,3. (B33) ™ Brosiens 1. Ths Gomirosriciris raorel. & A Won,
For space groups, Pm3, Pn3 and Pa3, Hf;a;;;}';goé hgzevlziiﬁ:l\ :Jf.’?i%%r%ftic];ogl;yi? \;13:3 267.
Rg{)(): 1R§J;)0+9R§7)0, j=0,1; i=2,3. (6:34) Havrrman, H. & Karig, J. (1959). Acta Cryst. 12, 93.

For space groups, Pm3m, Pn3n, Pm3n and Pn3m,

Acta Cryst. (1960). 13, 476

KARLE, J. & HavprMaN, H. (1957). Acta Cryst. 10, 515.
KariEg, J. & HavpTmaN, H. (1959). Acta Cryst. 12, 404.

The Crystal Structure of K;Hg,

By E. J. DuweLr* AND N. C. BAENZIGER
State Unaversity of Iowa, Iowa City, Iowa, U.S.A.

(Recetved 2 July 1959)

K,Hg, has an orthorhombic unit cell with a =10-06, b =19-45, ¢ =8:34 A, Z=4, space group, Pbcm.
The intensity data were obtained from Weissenberg and precession photographs of single crystals.
The structure was determined by Patterson and electron-density methods and refined by the least-
squares method. The K Hg, structure results from that of KHg, (a distorted AlB, structure) by

replacing one-eighth of the Hg atoms by potassium atoms.

Introduction

The crystal structure of KsHgy is the fourth of a series
of potassium amalgams whose structures have been
determined. KHgi, is isotructural with BaHgi:, whose
structure was reported by Peyronel (1952). The struc-
tures of KHgz and KHg were reported by Duwell &
Baenziger (1955).

Due to the stoichiometry of KHgi: the mercury

* Present address: Minnesota Mining and Manufacturing
Co., St. Paul, Minnesota, U.S.A.

atoms form a three-dimensional net which encompasses
the potassium atoms. In the KHg and KHgs struc-
tures, although not required by stoichiometry, the Hg
atoms tend to group together. In KHg, the Hg atoms
form nearly planar square groups of four which are
strung together in chains by bonds between corners
of the square groups. In KHg, the mercury atoms form
puckered hexagonal layer nets—a distortion of the
NaHgo(AlB;) ideal structure type. The KsHge struc-
ture reported below results from the KHgs structure
by replacing every eighth mercury atom by a potassium
atom in a regular way.



