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The unified program for phase determination, valid for all the space groups and both the equal and 
unequal atom cases, is continued here. The present paper is concerned with the centrosymmetrie 
space groups comprising type 3P 2. A detailed procedure for phase determination is described for 
this type. 

1. Introduct ion 

This is the f if th in a series of papers concerned with a 
unif ied program of phase determinat ion,  ini t ia ted by  
us (Karle & Haup tman ,  1959, hereafter  referred to 
as 1P). The applicat ion of the new probabi l i ty  meth- 
ods, based on the Miller indices as random variables,  
is made  here to the space groups of type  3P2 (Haupt- 
m a n  & Karle,  1953, 1959). This type consists of the 
three pr imi t ive  centrosymmetr ic  space groups of the 
rhombohedra l  system, the seven pr imit ive  centro- 
symmetr ic  space groups of the cubic system, the two 
convent ional ly  F-centered centrosymmetr ic  space 
groups of the or thorhombic system and the six con- 
vent ional ly  F-centered centrosymmetr ic  space groups 
of the cubic system. The F-centered space groups are 
referred, in this paper, to the pr imi t ive  uni t  cells 
defined in our paper on the seminvar iants  (Haup tman  
& Karle,  1959). Also listed in the la t ter  paper  is a set 
of coordinates for each space group. This is equivalent  
to choosing the funct ional  form for the structure 
factor which is to be employed in the present paper. 
A detai led procedure for phase determinat ion in the 
space groups of type 3P  2 will be presented which 
utilizes the same general  formula,  and, at  the same 
time, makes use of relat ionships among the structure 
factors characteristic of each space group. 

2. Notat ion  

The same notat ion as appears in 1P (1959) is employed 
here. 
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3.2. Integrated formulas  
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In  these formulas, p, q, r and t are restricted to be 
positive. Ordinari ly they  are given values in the range 
2-4. 

The remainder  terms are given in the appendix,  § 6 
and in 1P (1959). Equat ion  (3.1.1) or (3.2.1) serves to 
determine the magni tudes  of the structure factors I d~[ 
corresponding to the squared structure. :By means of 
equat ion (3.1.2) or (3.2-2), the phases of these struc- 

! 
ture factors ~u m a y  be determined.  In  the next  section 
we describe in detai l  how these equations are to be 
used. 

3. Phase  de termin ing  f o r m u l a s  

3"1. Basic formulas  
47~0.~ 

B2, o" # ~ 2 = 1 +  

X (~.pk~.q(h_t_k))k + R2, 0 .  

32* 

(3.1.1) 

4. Phase  de termin ing  procedure  

I t  is assumed tha t  the I d~h] have been calculated from 
the observed intensities. F rom these, the [ ~ ]  are 
obtained by  applying (3.1.1) or (3"2" 1). In  fact the 15%l, 
so computed, m a y  be made  to cover a range of re- 
flections extending beyond tha t  of the original set of 
observations. We are here concerned only with the 
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larger  I d~,], and  it is the  phases of these whose values 
are to be determined.  In  the  application of (3.1.2) or 
(3-2.2), the  values of some Id°~"[ m a y  be required. 
These m a y  be es t imated  from the corresponding [#hi 
or Id°~l or calculated f rom (3.1.1) or (3.2.1) in which 

is replaced by  d ~' and  5 ~' by  # " ' ,  given sufficient 
da ta .  

I n  the  phase determining procedures to be described, 
i t  will be seen t h a t  the  first  steps concern the  applica- 
t ion of (3-1.2) or (3.2.2) with choices of indices which 
t ake  full advan tage  of the  space-group symmet ry .  
The final step is in the  form of a general apphcat ion 
which is the  same for all the  space groups. 

The specification of the  origin is carried out in 
conformance with  the  seminvar ian t  theory  previously 
developed (I-Iauptman & Karle,  1953, 1959). I t  is the  
same for all space groups of a given type,  and therefore 
is the  same for all the  space groups considered here. 

I n  type  3P% the phases ~a~r which are s t ructure  
seminvariants ,  are of the  form h + k + l  =-- 0 (mod 2). 
I n  other  words either one or all three of the indices 
must  be even. This means t h a t  once the  functional  
form of the  s t ructure  factor  has been chosen, the  
values of these phases are uniquely determined by  the 
intensities alone. I t  is of interest  to note in the  proce- 
dures to follow, how a single equation,  (3.1.2) or (3.2.2), 
used in conjunction with relationships among the  
s t ructure  factors,  characterist ic of the par t icular  space 
group and the  chosen functional  form for the  s t ructure  
factor,  does, in fact,  lead to unique values for the  
s t ructure  seminvariants .  

4-1. Rhombohedral system 

We are concerned here with space groups /~3,  R-3m 
and R-3c.* Two special choices of hi  and he, in addi t ion 
to h~ = h2, are shown in the  first  two rows of Table 1. 
By  means of the  first of these choices, 

h i = ( h i ,  h + h i , / + h i )  and  h ~ = ( h + h i ,  l + h i ,  h i ) ,  

equat ion (3.1.2) or (3-2.2) yields the  value of 
, 2 v t VZh~,~+h~,~+h~d~hkZ, from which q ~ ( h + I c + l = O )  m a y  

be determined.  The second choice of hi and  he used 
with (3.1-2) or (3.2.2) yields the  va lue  of 

~'2  ~ '  
l / 2 ( h + k + / ) ,  ll2(h+k+~), ll2(h+kTl)(-o hkl , 

from which ~ z ( h  +/~ + l -- 0 (rood 2)) m a y  be deter-  
mined. Addit ional  choices for R3m and  R3c appear  
in Table 2. For  example,  the  first  pair  of hi and  he 

' 2  in column 2 yields the  value of ~h~,X+al,~d~a~0 mul- 
tiplied by  the numerical  coefficient given in column 2 
of Table 2. For  R-3c, the  relationship 

#~ = ( -  1)~'+~+z#~, 

following from the chosen functional  form for the  
s t ruc ture  factor,  gives rise to the  en t ry  ( - 1 )  a+~l in 
column 2. In  this way  the value of the  phase ~ 0  
is determined.  The remaining choices for hi  and he 
of Table 2 yield, in a similar way,  the  values of 
~2~,  q~foz, ~ ,  ~0~, and ~ a ~ -  The entries in th is  

* The discussion to follow is equally valid for the super- 
groups included in Tables 1, 2 and 3. 

Table 1 

Two choices of h i and h i for obtaining seminvariant phases for space groups, R-3, R3m, R3c, Pro3, Pn3, Ba3, Pm3m, Bn3n, 
Pm3n, Bn3m, Fro3, 2'd3, Fm3m, _~m3c, _~d3m and Fd3c, by means of (3.1.2) or (3.2.2). The latter equations yield the value of 

t oz~d~h from which the value of ~b may be inferred. 

h 1 h 1, ~+hl,  l+h~ ½(h+~+t), ½(h+k+~), ½(~+k+Z) 
h~ h + h~, Z + ~I, ~ ½(h+/c+ Z), ½(~+k+l), ½(h +-k + l) 

h = h i + h9 h, k, l h, I6 l 
Condition h + k + / = 0  h+I¢+l ---- 0 (rood 2) 

Table 2 
' 2  v The coefficients of 5~hid~ h given by the left side of (3.1.2) or (3.2.2), for selected values of h i and hi, and for each of six space 

groups. The notation P(Fm3m) refers to the primitive unit cell, instead of the conventionally centered one (el. Hauptman & 
Karle, 1959) 

h 1 

h 2 
h = h i + h ~  

R-3m 
B(_~m3m) 
P(_~d3m) 

R~c 

B(2'm3c) 
B(Fd3c) 

h i , ~+h  i, 1 i h i , h+~  i, 1 Z+/i, 15, li /+l i ,  k, 1 i hi, ki, ~+k  i 
h+~i,  hi, 11 h+hi,  hi, l li, ~l, l + l  i 1 i, k, l+ l  i hi, k+)~l," )~i 

h, h, 0 h, h, 21 5, 0 l l, 2k, 1 0, k, 

h, /el, /¢+ ~i 
h, ]¢+)~1, kl 
2h, k, k 

+1 +1 +1 +1 +1 +1 

(--  1) h+zi (-- 1) h+l ( -- 1)Z+ki (--  1) z+k (--  1) k+hi (--  1)/~+h 
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_f '2 .(~' table are the coefficients of , ~ l ~  which occur on 
the left side of (3.1.2) or (3.2.2). In general hi, ki and li 
in Tables 1 and 2 may  be chosen arbitrarily, permitting 
the possible use of many  combinations of hi and he 
for obtaining the value of a particular phase. As 
always, the computations are performed for the larger 
values of ]d~hl#h]. 

We note tha t  the phases obtained from Tables 1 
and 2 are phases q ~ ' ~ ( h + k + l  - 0 (rood 2)), which are 
seminvariants. By use of these, it is possible to cal- 
culate the values of additional seminvariants as 
illustrated by typical examples in Table 3. I t  is to be 
noted tha t  (3.1.2) or (3.2-2) now yields the value of 
#hld~h2d~hl+h2 where #~l and d~h2 are assumed to have 
been found by use of Tables 1 and 2. Again h~, ]c~ and ll 
are arbitrary,  but  limited by  the set of previously 
determined phases. 

For the purpose of specifying the origin a linearly 
semi-independent phase, ~ = ~h~z (h +/c + l ~ 0 (mod 2)), 
having a large corresponding ]d~kz] is chosen. The 
value (0 or g) of ~ is then specified arbitrarily, thus 
fixing the origin. Systematic application of equation 
(3.1.2) or (3-2.2) then permits the determination of 
the phases ~ of the remaining d~ of interest, using 
previously determined or specified phases as necessary. 

An example of a linearly semi-independent phase is 
~eeu (g - even, u -- odd). We recall tha t  phases of the 
type ~ ,  ~ ,  q~u~u, and q)uu~ may be obtained directly 
from the intensities before an origin specification has 
been made. From the specified phase and previously 
determined phases, additional phases are obtainable 
by  suitable choices of hi and he in (3.1-2) or (3-2.2). 
I t  is readily seen tha t  any phase is accessible, once 
the origin specification has been made. This follows 

Table 3 
! : t 

E x a m p l e s  of h 1 and  h 2 which  m a y  be inser ted into (3.1.2) or (3.2.2) in order  to obta in  the  p roduc t  O~hl6*h2O~hl+h 2 f rom which  
t 

t he  va lues  of addi t ional  seminvar i an t  phases m a y  be inferred.  This requires  a knowledge of 9hi  and  9h2 which  m a y  be ob ta ined  
b y  use of Table  2. Thus,  this list has  a par t icu lar  significance for the  six space groups inc luded in Table 2. The entries m a y  

undergo  cyclic p e r m u t a t i o n  on h, k, l 

h i h i , 7 i + k + h  i, h + ~ + 2 ~  1 h + / ,  h + l ,  0 k + 2 ~ i ,  k + 2 k l , ~ + k + / + 2 ~  i 2hi, ~ + / c + 2 h i ,  2/1 
h 2 h + hi, h + ~i, h + k + 1 + 2h i l, h + k: + / ,  1 h + k + 2ki, 2/ci, h + ~ + 2k i h + 2hi, h + 2~1, 2l + 21 x 

h = h i + h 2 h, k, ~ h, /c, l h, k, 1 h, k, 2l 
h + k + l - -  0 ( rood2)  h - -  ]c ( rood2)  

Table 4 
s 2 t 

The coefficients of 6~bid'bu given b y  the  left  side of (3.1.2) or (3.2.2), for selected values of h i and  h2, and  for each of seven space 
groups.  The  entries m a y  undergo  cyclic p e r m u t a t i o n  on h,/c, 1 

h i h, /c i, 1 i hi, /c, l hi, h + ~ i ,  l+)~ i ½ ( h + I c + l ) ,  ½(~+k+Z) ,  ½(7i+/c+/) 
h~ h, ki,  / i  ~l, /% l h + h  l, / + h i ,  h 1 ½(h+~+Z) ,  ½ ( h + k + l ) ,  ½ ( h + ~ + l )  

h = h  i + h  2 2h, 0, 0 0, 2k, 21 h, /c, 1 h, k, l 
- - h + k + l = O  h + l ~ + l  -- 0 (rood 2) 

P r o 3  

B m 3 m  

B m 3 n  

+I +i +I +I 

.Pn3 

P n 3 m  (--  1) ki+/i (--  1) k+/ (--  1) h (--  1) t 

P n 3 n  

P a 3  (--  1) h+ki ( -- 1) hi+k (-- 1)~ ( -- 1)~ 

Table 5 
-t2 At 

The coefficients of d°hi~h given b y  the  left  side of (3.1.2) or (3.2.2), for selected values  of h i and  h2, and  for each of four  space 
groups.  The  entr ies  m a y  undergo  cyclic p e r m u t a t i o n  on h, k, l 

h i ½(h+k),  ½(~+k),  1 i ½(h+k),  ½(~+k),  l hi ,  h + ~  i, l i h i , ~ + h  i, l i h i , h + h  i, l h i , ~ + h  i, t 

h 2 ½(h+~) ,  ½(h+]¢), 11 ½(h+~) ,  ½(h+k), 1 h + h l ,  h i ,  /1 h + ~ l ,  h i ,  /1 h + h l ,  hi ,  l h + ~ l ,  ~1, l 
h = h i + h z h, k, 0 h, /6 2/ h, h, 0 h, h, 0 h, h, 2l h, ~, 21 

h - -  k ( rood2)  h - -  k ( rood2)  

Pm3n'~ +I +I +I +I +i +i 
P n 3 n  (--  1)½(h+k) (-- 1)½(h-k) (--  1)h ( -  1)h+ll (-- 1)h+t (-- 1)t 
B m 3 n  (-- 1) ~+/i (-- 1) k+l ( - -  1 )  h+ /1  ( - -  1 ) h + / i  ( -  1)h+/ ( _ 1)h+Z 
B n 3 m  ( -- 1) ½(h-k)+li ( -- 1) ½(h+k)+l ( -- 1) h + 1 + 1 ( -- 1) h 
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from the fact  tha t ,  s tar t ing with the  specified phases 
and those of the form ~kz ( h + l c + l  -- 0 (mod 2)), it  
is possible to express an a rb i t r a ry  vector h (whose 
components have  any  par i ty)  in the form h i + h 2 ,  

! t p ! 

where ~hl and Fh~ are known. For  example,, ~,a=~u~ 
is obtainable from suitable phases ~ h l = ~ ,  and 
F~,2---- ~g~ where h = hi + he. The remaining types  
~ and ~,,~ are similarly obtained. 

4.2. Cubic system, primit ive 

We are concerned here with the seven space groups, 
Pm3,  Pn3 ,  Pa3,  P m 3 m ,  Pn3n ,  P m 3 n  and Pn3m.  The 
special choices for hi and h9 are shown in the first 
two rows of Tables 1, 4 and 5. Table 1 has been 
described in § 4.1. The entries in Tables 4 and 5 are 
the coefficients of # ~ 5 ~  which occur on the left side 
of (3-1-2) or (3-2-2). Again the  hi, ]ci and li in the 
tables m a y  be chosen arbi t rar i ly ,  permit t ing the pos- 
sible use of m a n y  combinations of hi and he for ob- 
taining the value of a par t icular  phase. In  the applica- 
tion of Tables 4 and 5, the entries in each of the 
columns m a y  be carried through cyclic permuta t ions  
on the h,/c and l, which would mult iply the number  of 
possible choices by  three. For  example, the  cyclic 
permuta t ions  are carried out in detail  in Table 2, 
wherein columns 4 and 6 are cyclic permuta t ions  of 
column 2 and columns 5 and 7 are cyclic permuta t ions  
of column 3. In  a manner  analogous to tha t  i l lustrated 

by  Table 3, it is possible to use phases obtained by  
means of Tables 4 and 5 to obtain addit ional  phases 
which are seminvariants .  Finally,  the origin is specified 
as in § 4-1 and the phase determinat ion is completed. 

4-3. Cubic system, F-centered 

We are concerned here with the  six space groups,  
Fm3,  Fd3,  Fm3m,  Fm3c,  F d 3 m  and Fd3c. The special 
choices for hi and he are shown in the  first  two rows 
of Tables 1, 2, 6 and 7. The nota t ion P ( F m 3 )  implies 
t h a t  the space group F m 3  is referred to the  pr imit ive 
unit  cell defined previously ( t{auptman & Karle,  
1959). Tables 1 and 2 have been described in § 4-1. 
The entries in Tables 6 and 7 are the coefficients of 

t 2 t 
5~hx#h which occur on the left side of (3.1.2) or (3-2.2). 
Again the hi, ]cl and li in the tables m a y  be chosen 
arbi t rar i ly ,  permit t ing the  possible use of m a n y  
combinations of hi and he for obtailfing the value of 
a par t icular  phase. In  the  application of Tables 6 
and 7, the  entries in each of the  columns m a y  be 
carried through cyclic permuta t ions  on the  h,/c and l, 
which would mult iply  the number  of possible choices 
by  three (cf. Tables 2 and 8, where the cyclic permuta-  
tions are explicitly carried out). In  a manner  analogous 
to t ha t  i l lustrated by  Table 3, it  is possible to use 
phases obtained by means of Tables 6 and 7 to obtain 
addit ional  phases which are seminvariants .  Final ly,  
the origin is specified as in § 4.1 and the phase deter- 
minat ion is completed. 

Table 6 
t e p The coefficients of d~hi#h given by the left side of (3.1.2) or (3.2.2), for selected values of h 1 and h 2, and for each of six space 

groups. The entries may undergo cyclic permutation on h,/c, 1 

h 1 hi, /q, h + h 1 + k i hi, /c + Z + h i, 
h~. h+hi, h+~l, h+hi+~ i h+hi, l+hl,  

h = h i + h 2 h, h, 0 h, k,  

2/=h+/c 
P(Fm3) 
P(Fm3m) + 1 + 1 
P(Fm3c) 

.P(Fg3) 
-P(Fd3m) (-- 1) h+hi+h (-- 1) 1 
P(Fd3c) 

1 Z + h, l, 11 
l l, k+l ,  l+~ 1 

2l h, lc, 1 
h +lc--31=O 

k, ~+k,  ½(~+k+l) 
h+-k, h, ½(h+~+l) 

h, lc, 1 
h+Ic+l ---- 0 (rood 2) 

+1 +1 

( -- 1)1 (-- 1)h+k 

Table 7 

- t  e - !  The coefficients of d°hlg°h given by the left side of (3.1.2) or (3.2.2), for selected values of h i and h~, and for each of four space 
groups. The entries may undergo cyclic permutation on h,/c, 1 

h i h, ki, 1 i hi, ½(k+hi), ½(l+hi) 
h 2 h, h + k  i, h+ l  i ~1' ½(k+hl), ½(/+hi) 

h = h i + h 2 2h,  h, h 0, /c, 1 

h i -  k = l (rood2) 

P(Fm3m) + 1 + 1 
P(Fm3c) (-- 1) h+kl+ll (-- 1)½ (k+/) 
P(Fd3m) (-- 1) h ( -  1) hi 
P(Fd3c) ( -- 1)ki+h ( -- 1) ½(k+/+2h9 

¼(h+k+l), ¼(~+3k+Z), ½(~+k+l) h 1, k+hl,  h 
¼(3h+k÷ Z), ¼(h+k+/), ½(h+~+l) h+~l, hi, k 

h, k, l h, k, h + k 
h T k T 1  ---- 0 (mod 4) 

+1 + I  
( - 1)1 ( - 1 )h+k 

(-- 1)¼(h+~+0 (-- 1)hl 
(-- 1)¼(h+k--2O ( - -  1 )h+k+hl 
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Table 9 

E x a m p l e s  of h 1 a n d  h 2 w h i c h  m a y  be  i n s e r t e d  i n to  (3.1.2) o r  
• ! r v . 

(3.2.2) in  o r d e r  t o  o b t a i n  t h e  p r o d u c t  ~hl~h2~hl_i_h2, f r o m  w h i c h  

t h e  v a l u e s  of a d d i t i o n a l  s e m i n v a r i a n t  phase s  m a y  be  i n f e r r ed .  

Th i s  r e q u i r e s  a k n o w l e d g e  of p h a s e s  p r e v i o u s l y  o b t a i n e d  f r o m  

use  of T a b l e  8 a n d  t h u s  ha s  a p a r t i c u l a r  s ign i f i cance  fo r  t h e  

t w o  space  g r o u p s  l i s t ed  t he r e .  T h e  en t r i e s  m a y  u n d e r g o  cyel io  

p e r m u t a t i o n  on  h, Ic, 1 

hi h, h, 0 ½(h+k+Z), k, ½(~+k+l) 
h~ 0, z, z ½(h+~+0, 0, ½(h+~+0 

h = h 1 -{- h 2 h, It, 1 h, k, 1 

C o n d i t i o n s  h -  lc + l = 0 h + Ic ÷ 1 -- 0 ( rood 2) 

4.4. Orthorhombic system, F-centered 
We are concerned here with the two space groups 

Fmmm and Fddd. The special choices for h i  and  he 
are shown in the first two rows of Table 8. The entries 

v 

in Table 8 are the coefficients of ~ h ~ h  which occur 
on the left side of (3.1.2) or (3.2.2). We note tha t  
columns 3 and  4 are cyclic permuta t ions  of column 2. 
Table 9 i l lustrates how addi t ional  seminvar iants  m a y  
be obtained from the results from Table 8. For ex- 
ample,  column 2 of Table 9 utilizes the results of 
columns 2 and  4 of Table 8; and column 3 of Table 9 
utilizes the results of column 4 of Table 8 and column 2 
of Table 9 in order to obta in  new phases. Final ly ,  the 
origin is specified as in § 4.1 and the  phase determina-  
t ion is completed. 

5. C o n c l u d i n g  r e m a r k s  

This paper  should be read in conjunction with 1P 
(1959), in  which the symbols  are defined and  general  
remarks  are made  which are applicable to all the  space 
groups. 

The main  choices of h i  and  h2 for the various space 
groups are l isted in the tables. They i l lustrate how the  
seminvar ian t  phases can be obtained direct ly from 
the X-ray  intensit ies in m a n y  different ways. 

The m a n y  ways of calculating a par t icular  phase,  
together with the fact tha t  the calculation of the r ight  
sides of (3.1.2) and  (3.2.2) should yield not  only the 
sign of the left side, bu t  also its magni tude,  serves as 
a good in ternal  consistency check as the phase deter- 
mina t ion  proceeds. I t  is impor tan t  to bear  in mind  
tha t  the ~'s or A ' s  derived from one and  two-dimen- 
sional da ta  for crystals having considerable overlap 
in projection m a y  make  incorrect contributions to 
(3.1.2) and  (3.2.2). Overlap in a projection results in 
a reduction of the  effective number  of atoms in tha t  
projection, a factor which is not  taken  into account 
in the derivat ion of (3.1.2) and  (3.2.2). I t  m a y  there- 
fore often prove worthwhile to calculate (3.1.2) and  
(3.2.2), using only those 2's and A 's  which are derived 
from three-dimensional  data.  
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6. Appendix  

The correction terms for the formulas listed in § 3 are 
given here and in 1P (1959). As a general rule, for 
larger N, these terms make a very small contribution. 
In  any specific instance, the investigator can judge 
their importance for himself. 

We define: 

9Re,  o = - -  ( g ~ o o  + ~o'~;o + ~o'o'~,) 
0"4 

40"6 
+ ( p + q - 4 ) +  ~ ,  

G2 0"4 

where, 

2 0"~12 
0"2 0-p (p + q-- 4 ) ~ ; , "  

0"4 
40"--~ ( (P-- 2 ) ( p - 4 )  + (q-- 2)(q--4))~'a2 

0"4 
+ 1-~a,~ ( ( P -  2) (q-  2)+ 2 ( p -  2 ) (p -  4) 

+ 2 ( q - 2 ) ( q - 4 ) )  + . . .  , 

(6-1) 

(6.2) 

where, 

and, 

loR2, o = ~9-F ~3 , 

~2 = - - -  
0"4 

(6.3) 

t t l  

(3 g~oo + 3 go',~o + 3 goo'2, + J°~+Z, ~+~, o 

g i l l  . t i t  t i t  I t !  

+ o, ~+~ ~-~ + gh+-[, o, ~5 + ~h+~, h+~, o + go, ~+~, ~+t 
l i t  . 2 ~ , l t t  l l t  

+ ~+~,o,~+~+ ~'~+,~,~+~,o+2@o,~+~,~+z 
t i t  

+ 25°~+~, o,~+~), 

14a~/~ 
~3= -- 0----~/G (p+q-4)@~,@~" 

7 aa 
7 ~  ( ( P - 2 ) ( p - 4 ) +  (q-2) (q-4) )#~ '2  

490-6 7 0"4 
+ ( p + q - 4 ) +  ( ( p -  2)(q-  2) 

0"20"4 

+ 2 ( p -  2 ) ( p -  4) + 2 ( q -  2) (q-  4)) + . . .  , 

0-~/2 
~R~, o=  - - -  (#o'~+~+~,~+~+~ + #~,~:~+~, o, ~+~+~ 

0-4 

(6.4) 

where, 

(6.5) 

(6.6) 

(6.7) 

a~ 12 (3dOo,[$+~+~,~+~+~+ 3d~+~+,, o, n+~+t 
0"4 
t t t  t t t  t t !  t t !  

+ 3 £n+~+~, ~+~+~, 0 + #2~, ~, ~ + #~, 2~, ~ + #l, ~, 2~ 
t i t  l i t  # t i t  - -  

+~+~,~+~,o+~o,~+/,~+~+ ~+~,o,~+~ 
l i t  # f l y  . t i t  , + ~,~+,~,~+~+~+ h+~+~,~,~+~+ ~h+~,~+~+~',k) (6"8) 

[0-~/2 
18R.., o = - - - -  (#o:'~+~+,,~+~+,+ #h'+~+Z, o,h+~+l 

0-4 
,,, 2G6 

+ ~h+~+2, h+k+~, 0) + - -  (P + q-- 4) + ~1, (6"9) 
0"20"4 

0"all 2 
~R~. o= - ~-~ ( ( , . -  2)~fi~, 

+ ( p -  2)~¢i2~ + ( q -  2)~¢;~+,,~) + ~ ,  (6-10) 

where 
0"~12 

0"4 

+ g; ; ,  ~1, z]+~) 

0"4 

+ ~¢~';, k~, o.z~+~) 

(74 
t t !  . . . . , 

+ ghl+h2, kl+k~, tl+Z2) + (6" 11) 

7 o.14/2 
~oR~, o =  - S0---~- ( ( ~ -  2)~/"~ 

~2 ~2 + ( p - 2 ) d %  + ( q - 2 ) # , , 1 + h ~ )  + q6 ,  

where, 
0-P t i t  e~ = - - -  ~ ; , ~ ( 3 ~ ; / + ~ ,  ~1,,1 + 3 ~ 1 ,  a + ~ , , 1  
0"4 
t t t  t i t  

+ 3~hl, kl,/a+2/2 ~t_ ~hl+h2+k2, h2+kx+k2, Zl 

Ht H~ 
~- ~h2+kl +k2, hl+h2-t-k2, ll "~- ~ hl, kl+k2+12, k2+/1+/2 

+ ~h~, ~+~+1~, ~+~,+~ + #'~'1: ~1+~+l~, ~+1~+1. 
t t t  t t t  - 

t t t  t t t  

t t t  

0"~/2 

0"4 
t t !  t t t  

-k- 3 ,~h2, k~, 2h+12-'1- ~hl+he+k~, hl+lz~+k2,t~ 
t t t  t t t  

"4- ~hl+kl+k2, hl + h2+kl, 12 "~- ~hl+h2+kl, hl +kl +k~., 12 
t t t  t t t  

"4- ~hl+h2+kl, h~+kl+k~, l~ -F ~h2, k~+k2+'ll, kl+ll+l~ 
tlt tlt - 

"~- ~h2, kl+ll+t2, kl+k2+ll -{- ~ h2, kl+k2+ll, kl+tl+12 
t t t  t t !  

-F ~'°h2 ' kl+k~+h, kl+ll+l~ -F ~hl+h2+h, k~, h1+11+1~ 
t t !  t i t  . 

-F ~hl+l~+12, k2, hl+h~.+ll -F ~hl+h2+ll, k2, ha+ll+12 
t t !  

-t- ~ h1+~2+ll, ~2, h~+ll+12) 
6~12 

- - -  # h l - [ - l l 2 ( a # h t l t + ~ 2 ,  k1+~2,11-[-12 
i f4  

,,, _ 3 d o ' "  -~- 3 ~h~+h~., ~+~2, h+l~. -F hl+h~., kl+k~-, ll+l~. 
t t t  t t !  

-F ~h2+~1, h1+~2,11+12 -F ~ h2+kl, hl+k~, 11+12 
t t t  t e t  

"3t- ~'Vhl+h:2, h2+kl, 11+12 -F ~ h2+kx, h~ +k~, ll +l~ 

(6.12) 
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ttt tit . 
÷ ~h~+h~, k~+h, ,h+l~. ÷ ~h~+h~., ~ + ~ ,  k:t+l~ 

l l t  t i t  

÷ #hl+h2,  kl+12, k2+/1 ÷ ~hl+h2, k2+11, k1+/2 
l i t  t i t  

÷ ~h~+Zl, k~+k~, h~+Z~ + ~h~+i~, k~+k~, ~+~ 
,,, d~,,, _~ . . .  

÷ ~A:~hl+l.2, kl+k:, h2+11 ÷ h2+ll, kl+kg, h1+12~ ÷ ' 
(6.13) 

IIR3, o :  --8-~2 ((r-- 2 ) # ~  ÷ (p-- 2 ) # ~  ÷ (q-- 2) 

'2 
× #~+h~) + 0~, 

where 
(71/2 

0 7 :  - -  - -  # I l l (  #h' l ' ,  h2 - { - k l +k2 - { - 12 ,  h2 - { -~¢2+ l l - { - 12  
(74 

t,'t 
÷ '~hl+h~.+~'e+Z~, kl, h~+}~+Z-,+~ 
+ #;,t,'+h~ ,~..+~,,,~+~,+k,+~, ~1) 

(TP ~;,~( ,#;2, ~l+k,+k~+,,,~,+,~,+.+,~ 
(74 

,tt 
÷ '~h~+h~+k~+l.1, hl+kl+k~.+Z.~,/,~. 

t t t  _ , 

+ 6¢hl~h~+}l+h, ~, hl+kl-,-h+~.) 

(7~[2 #1~1-{-h2,( #htl"-{-~2, h l + k 2 + l l ,  hi-I-k1-{-[2 
(7.,1 

.~,., 
÷ ~h~.+k~+l~, kl+k2, ~.1+kl+12 

÷ #h2+kl+/1, hi+k2+/1,11+12) ÷ " " " ' 

= - - -  #h~ + (q-- 2) 12R3, o 8(72 ((r-2)#;,~+(p-2) ,2 

,2 x #~,+h~) + 0s ,  

where, 

0s 

(6.14) 

(6.15) 

(6.16) 

#,, (3# 't 
= --  - -  1 h 1, h2+kl+k2+/2, h2+k2+11+12 (74 

IH 
+ 3 ~hl+h2-Fk2+12, kl,  h2+k2+ll+12 

ttt 
+ 3 ~h~+h..,+k~+h, h~+kl+ke+-~e, h 

ttt 
÷ ~hl+/2,  h2+kl+k2, h2+k2+ll+12 

l i t  -- -- t i t  

÷ # h l + h 2 + k 2 ,  kl+12, h2-]-k2+114-12 ÷ ~h1+12, k1+12,/1T212 
t , t  t i t  

+ &'~hl+h~+k2, h2+kl+k~, Ii ÷ ~'~hl+h2+k2+12, h2+k~, k2+h+12 
t l l  

÷ ~hl+h2+12, h2+kl+k2+-12, k2+/1 
, ' i t  

+ ~hl+h2+k2+l~, k1+k2+12, h2+/1 
ttt -- ttt 

÷ 'OX~hl+k2,-h2+kl+k2+12, h2+ll+12 ÷ '~hl+2h2, h2+kl, h2+/1 
l i t  t t t  

+ ~hl+k2, kl+2k2, k2+/1 ÷ ~'~hl, kl+k2+/2, k2+11+/2 
ttt 

+ ~l+a~+i~, ~, i~+~+~) 

(TP # ~ ( 3  #it~ ', ~+~x+~*~,, ~+~+~1+~ 
(74 

t t l  

+ 3 ~hl+h2+kl+ll, k2, hl+kl+Zl+12 
t i t  - - 

+ 3 ~hl+h2+kl+ll, hl+kl+k2+ll, 12 
ttt 

÷ ~¢~h2+/1, hl+kl+k2, hl+kl+ll+12 
ttt 

+ #~l+n~+h, ~+~, ~+~+~+~. + ~,~'+~, ~+~, 2~1+~ 
t t t  t i t  - -  

÷ ~h l -Fh2+k l ,  hl+kl+k2,12 ÷ ~ h l + h 2 + k l + l l ,  hl+~2, }1+/1+/2 

and 

tm 
~- ~ h l + h 2 + l l ,  hl+kl-Fk2+ll, kl+12 

t i t  

l i t  -- t , , t  

"JV #h2+kl, hl-l-kl+k2+ll, hl+ll+12 Jv ~2hl+h2, hl+k2, hl-t-12 
Ht ~tt 

2ff ~h2-~.kl, 2kl+k2, kl-{-~2 ~ #h2, kl-t-k2+ll, kl-t-/l~ 12 

(71/2 
- - -  #~+h~(3#it~+h~, ~1+~,-~+~,, h~+~,+~ 

(74 

, ,  . 3 # ' "  - + 3 ~X~h2_}_kl+/1, kl+k2, hl-}-kl+/2 ÷ h2-}-kl-}-/1, hl+k2+ll ,  ll+12 
i t !  t t t  . 

i l l  , . I t l  

÷ #hl+h2+12, kl+k2+/2,/1~/2 ÷ #h1+1~2, h2+)['l, ll+12 
t , t  _ i t /  

÷ ~'~h~+k~+z2, ,'~-i-k~+k2, k~+h ÷ ~hl+l~, ~.+k~+~u, }u+/~+/.~ 
i t l  i t t  

÷ #hl+k2+12, kl+/2, h2+/1+/2 ÷ #hl+h2+k2, h2+kl+12, h2+/1 
t i t  - -  t t t  

÷ ~¢~hl+h2, h2+kl+k2, h2+11+12 ÷ ~hl+h2+12, kl+k2, k2+11+/2 
t i t  , i t  

+ d°~+~, ~+~, ~+~, + #h,+~, ~,+~, ~+~,), (6"17) 

18R3, o = 11R3, o • (6"18) 

Next  we define (where Cn(t) is replaced by Cn): 

t (71/2 
,R2,o = - - -  (#~,o  + #toLo + ~o'o'2,) 

(74 

8a6 (2C1-  C2)+ 09, (6.19) 
C1 (7~ aa 

where, 

09 --  C10"2 0"41/2 

(74 
(74 (8C1_6C2+C3)~;2  + 16C~(7~ 

2 C1 (7~ 

x ( ( 2 C 1 - C 2 ) ~ + 4 C 1 ( 8 C ~ - 6 C 2 + C 8 ) ) + . . .  , (6.20) 

loR£, o = 02 + 01o, (6.21) 
where, 

OlO= ~ ~  ( 2 c l -  c~)#~ 

7 (74 
2G(7~ ( 8 0 1 -  6C2 + C3)#~ 2 

98a6 7(74 
- -  (2C1-  C2) ÷ - -  
C1 (72 (74 16 a~ 

x ( ( 2 C 1 - C ~ . ) 2 + 4 C ~ ( 8 C 1 - 6 C e + C 3 ) ) + . . .  , (6.22) 

tm 

(74 
8(76 ,t, (2C~-  Ce) + 09, (6.23) 

+ #h+k+~, h+~+L o) C1 (72a4 

12R2, o = 04 + 01o, (6"24) 

t (7~/2 
laR2, o ---- -- I ( d~ot, t~.k+l, ~+k+z + #tht+~+~, o, h+~+z 

(74 
4(76 

+ oZh'+k+i, a+~+i, 0) Cx(Te(7a (2C1-  Ce) -F 09, (6"25) 
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, ~/~ (2C1-  ,~ ,2 ,2 9R3, 0---- ~-1-~2 C2) (ffht-~- ~vh2 -{- ffbt+h2) "~- ~)5 
(6.26) 

_ ,  7 ~/~ 
1 ~ ,  0= ~ (2c~ - c ~ ) ( ~ 1  + ~;;~ + ~ + ~ . . )  + e0, 

(6.27) 

liB3,' 0---- 8--C1G2°'~/2 (2C1_  C2)(#~2 + #~2 + #ht+h~) + e7 , ' 2  
(6.28) 

R '  7~1/~ '~ '~ 
~ ~, o = = - z - -  (2C~- C2)(#;,] + # ~  + # ~ + ~ )  + ~s,  

(-/1 G2 
(6-29) 

and 
l~R~,0-- i~R~, 0 . (6.30) 

In  order to summarize the relations among the  cor- 
rection terms for the various space groups in type  3Pe, 
it  is convenient to make  the identification, 

R - R (°) , (6.31) 

R'~- R O) . (6.32) 

Thus, for space groups, R3, R-3m and R-3c, 

R(~)~=IR!!)o; j = 0 ,  1" i=2,  3 (6.33) ~ u  ~ , • 

For space groups, Pm3, Pn3 and Pa3, 

/~(~\=~R!~)0+~,, ~R (y)'~,0, j = 0 ,  1", i = 2, 3 . (6.34) 

For  space groups, Pm3m, Pn3n, Pm3n and Pn3m, 

A UNIFIED PROGRAM FOR PHASE DETERMINATION, TYPE 3P2 

R(J) _ R(~L ~ R(~). ~,0-1 ~,,T10 i, 0, j = 0 , 1 ;  i = 2 , 3 .  

For  space groups, Fro3 and Fd3, 

/~(J)~--R~\ - ~(~)" j - - 0 ,  1" i 2,3 't, u -- i z, u t ll-S-"i, 0, , ~ • 

(6.35) 

(6.36) 

For  space groups, Fm3m, Fm3c, Fd3m and Fd3c, 

R(i) 1R(i) ' ~'(~) • i,o = ~,o-~12~i,o, j=O, 1; i = 2 , 3 .  (6.37) 

Finally,  for space groups Fmmm and Fddd, 

R(~)~- R (j) + R ~j) • j = 0, 1" i = 2, 3 (6-38) ~, u-- 1 i, 0 13 i, 0 ~ , • 

' R '  Note t ha t  1R% 0, 1R8, 0, 1R~., 0 and 1 3, 0 are defined in 

1P (1959). 

The remainder  terms in the  basic formulas are 
especially simple for the special case p = q =  r =  2. For  
this case, the formulas reduce to those obtainable by 
the algebraic methods proposed by  us (1957). 

References 

HAUPTMA~, H.  & KARLE, J .  (1953). Solution of the Phase 
Problem. I. The Centrosymmetric Crystal. A.C.A. Mono- 
graph No. 3. New York: Polycrystal Book Service. 

HAUPTMAN, H. & KARLE, J .  (1957). Acta Cryst. 10, 267. 
HAUPTMAN, H. & KARLE, J .  (1959). Acta Cryst. 12, 93. 
Y~A_RLE, J .  & HAUPTMAN, n .  (1957). Acta Cryst. 10, 515. 
KARLE, J .  & HAUPTMAN, H.  (1959). Acta Cryst. 12, 404. 

Acta Cryst. (1960). 13, 476 

T h e  C r y s t a l  S t r u c t u r e  o f  K s H g ~  
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KsHg 7 has an orthorhombic unit cell with a = 10-06, b = 19.45, c = 8.34/~, Z =4, space group, Pbcm. 
The intensity data  were obtained from Weissenberg and precession photographs of single crystals. 
The structure was determined by Patterson and electron-density methods and refined by the least- 
squares method. The KsHg 7 structure results from that  of KHg  2 (a distorted A1B 2 structure) by 
replacing one-eighth of the Hg atoms by potassium atoms. 

Introduct ion 

The crystal  s t ructure  of KsHg7 is the fourth of a series 
of potassium amalgams whose s t ructures  have been 
determined. K H g u  is isotructural  with BaHgH, whose 
s t ructure  was reported by Peyronel  (1952). The struc- 
tures of KHg2 and K H g  were reported by Duwell & 
Baenziger (1955). 

Due to the stoichiometry of K H g l t  the  mercury  

* Present address: ~d_innesota Mining and Manufacturing 
Co., St. Paul, Minnesota, U.S.A. 

atoms form a three-dimensional  net  which encompasses 
the  potassium atoms. In  the K H g  and KHg2 struc- 
tures, a l though not  required by stoichiometry,  the  Hg  
atoms tend to group together.  In  K H g ,  the Hg a toms 
form near ly  p lanar  square groups of four which are 
s t rung together  in chains by  bonds between corners 
of the square groups. In  KHg2 the mercury  a toms form 
puckered hexagonal  layer n e t s - - a  distort ion of the  
NaHg2(A1B2) ideal s t ructure  type.  The KsHg7 struc- 
ture reported below results from the KHg2 s t ruc ture  
by  replacing every eighth mercury  a tom by  a potass ium 
a tom in a regular way.  


